Lie symmetries of semi-linear Schrödinger equations and applications
نویسندگان
چکیده
منابع مشابه
Lie symmetries of semi-linear Schrödinger and diffusion equations
Conditional Lie symmetries of semi-linear 1D Schrödinger and diffusion equations are studied if the mass (or the diffusion constant) is considered as an additional variable. In this way, dynamical symmetries of semi-linear Schrödinger equations become related to the parabolic and almostparabolic subalgebras of a three-dimensional conformal Lie algebra (conf3)C. We consider nonhermitian represen...
متن کاملReduction of Differential Equations by Lie Algebra of Symmetries
The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...
متن کاملLie symmetries and differential Galois groups of linear equations
For a linear ordinary differential equation the Lie algebra of its infinitesimal Lie symmetries is compared with its differential Galois group. For this purpose an algebraic formulation of Lie symmetries is developed. It turns out that there is no direct relation between the two above objects. In connection with this a new algorithm for computing the Lie symmetries of a linear ordinary differen...
متن کاملDynamical symmetries of semi-linear Schrödinger and diffusion equations
Conditional and Lie symmetries of semi-linear 1D Schrödinger and diffusion equations are studied if the mass (or the diffusion constant) is considered as an additional variable. In this way, dynamical symmetries of semi-linear Schrödinger equations become related to the parabolic and almost-parabolic subalgebras of a three-dimensional conformal Lie algebra (conf3)C. We consider non-hermitian re...
متن کاملLie Symmetries of Difference Equations
The discrete heat equation is worked out in order to illustrate the search of symmetries of difference equations. It is paid an special attention to the Lie structure of these symmetries, as well as to their dependence on the derivative discretization. The case of q–symmetries for discrete equations in a q–lattice is also considered.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2006
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/40/1/018